Magnetized Dusty Plasma Thoughts

Scott Robertson
Univ. Colorado - Boulder
Outline

I. Plasma production
II. Particles
III. Diagnostics
IV. Physics experiments
V. Lab safety
I. Plasma production

• YES: RF discharge is great. Large negative axial plasma potential (≈100 V) confines dust.
• YES: “Anodic discharge”, also large negative radial plasma potential, helps confine with horizontal B
• NO: hot filament discharge. Magnetic field prevents entry of electrons from filaments at the edge.
• NOVEL: Deuterium UV lamps photoionize NO gas. Commercial lamps may not work in B field.
IIa. Novel particles?

- Glass microballoons have 1-2 micron wall thickness, do not improve q/m ratio below about 5 microns
- Buckyballs, m = 720 amu
  Experiments done already in a Q machine
- Commercial nanoparticles
- In situ nanoparticles
IIb. Nanoparticles grown *in situ*

- Method 1: tungsten boat + 5 Torr gas pressure
- Method 2: rf discharge in SiH$_4$
- Photochemical haze or smog
- Problems
  - Broad distribution in size
  - So hard to see
III. Diagnostics

Laser scattering works to 10 nm dia. with PMT detector and 1 W Ar laser

The Location of Very Small Particles in Silane RF Discharge

Károly Rózs, Gregor Bánó, and Alan Gallagher

Abstract—The size and location of silicon particles that grow in a pure silane, capacitively coupled RF discharge, are measured by laser light scattering. The discharge conditions were similar to those typically used to produce amorphous silicon devices, except the temperatures is 300 K. At early discharge time, when the particles are small (D~10 nm), they are located at the middle of the discharge. The larger ones that occur at later discharge times form a double layer nearer the electrodes. Surprisingly, the particles are not concentrated at the region of brightest discharge light, which represents the distribution of high-energy electrons. Yet as expected, the distribution of film deposition on the electrodes fits radial diffusion with a source proportional to light intensity. It is also shown, by tilting the substrate, that a small gradient in plasma potential can have a major effect on particle positions.

Fig. 1. Discharge arrangement. The scattered laser light from the dust was scanned in horizontal and vertical directions.

Fig. 2. Vertical distribution of the scattered light from the dust developed between 1.5- and 16.0-s discharge. The 1.5-s discharge represents 70-nm diameter particles, and the particle size is growing near-linearly in time.
An argon ion laser (7-80 milliwatts at 488 nm) is used to illuminate the vacuum chamber directly above the oven. A CCD camera (Meade Deep Space Imager) is used to take long exposure photographs (typically 0.5 sec). The smoke is seen in forward scattered light at 10 degrees from the beam. A 488 nm filter is used in front of the camera to block the oven light, but is not necessary.

Reference:
IVa. Physics ideas – vertical B field

• **Confusing issue**
  Radial E makes azimuthal E x B ion drift, ions push dust particles around
  Perhaps no radial E with strong enough B, truly one dimensional.
IVb. Physics ideas – horizontal field

Macroscopic particles = bad idea, they fall.

Case I – no strong radial E field
For 1 micron radius particles charged to 1 volt:
Q = 700e, Cyclotron period $10^5$ s
Hop distance $= 2\pi g / \Omega^2 = 10^{10}$ meters
Velocity at which $qv \times B = mg$ is $v = 2 \times 10^5$ m/s

$qv \times B = mg$ here
What particle radius would be OK in gravity?

Solve for mass where hop distance \( d = 1 \) cm

\[
M_{\text{ok}} = 10^{-20} \text{ kg}, \quad \text{radius}_{\text{ok}} = 10 \text{ nm}
\]

\( C_{60} \) has diameter 0.7 nm

Example of successful magnetized dusty plasma with B horizontal

\[
M_{\text{ok}} = \frac{d \cdot q^2 \cdot B^2}{2 \cdot \pi \cdot g}
\]

---

**Production of \( C_{60} \) plasma**

N. Sato, T. Miura, T. Hirata, Y. Yagi, R. Hatakeyama, and S. Iizuka

Department of Electronic Engineering, Tohoku University, Sendai 980, Japan

(Received 22 February 1994; accepted 21 June 1994)

An ultrafine-particle plasma consisting of electrons, positive K\(^+\) ions, and large negative \( C_{60}^- \) ions is produced by introducing “Buckminsterfullerene, \( C_{60}^- \)” particles into a low-temperature (=0.2 eV) potassium plasma column confined by a strong axial magnetic field. With an increase in the \( C_{60}^- \) fraction, the electron shielding decreases, yielding clear effects on plasma collective phenomena, which are demonstrated for low-frequency electrostatic plasma-wave propagations and instabilities. This plasma might be useful for producing new \( C_{60}^- \)-based materials.

---

![Experimental apparatus](image_url)

**FIG. 1.** Experimental apparatus.

![Wave patterns of ion waves](image_url)

**FIG. 7.** Wave patterns of ion waves with frequency \( \omega/2\pi=30 \text{ kHz} \) at (a) \( T_0=200 \text{ C} \) and (b) \( T_0=470 \text{ C} \).
IVc. Physics ideas – horizontal field anodic plasma & strong radial E

Numbers from Trottenberg et al., PoP 13, 042105, 2006.
Particle radius = 1 µm
qE = 10^{-13} \text{ N}
Mg = 10^{-14} \text{ N}
Assume v = 10 \text{ mm/s} = 0.01 \text{ m/s}
Q = 3000 \text{ e}
Qv \times B = 2 \times 10^{-17} \text{ N}
V. Lab Safety

• Safety rules same as for hospital NMR facilities
• Dangerous to have iron tools
• Dangerous to persons with metal pins in bones, army knife, keys, jewelry, etc.
• Metal detector for entry
• B may cause destruction of turbo pumps
• Alarm and personnel auto dialer for low helium
Questions?
Comments?